Applying Machine Learning to the Problem of Choosing a Heuristic to Select the Variable Ordering for Cylindrical Algebraic Decomposition
نویسندگان
چکیده
Cylindrical algebraic decomposition(CAD) is a key tool in computational algebraic geometry, particularly for quantifier elimination over real-closed fields. When using CAD, there is often a choice for the ordering placed on the variables. This can be important, with some problems infeasible with one variable ordering but easy with another. Machine learning is the process of fitting a computer model to a complex function based on properties learned from measured data. In this paper we use machine learning (specifically a support vector machine) to select between heuristics for choosing a variable ordering, outperforming each of the separate heuristics.
منابع مشابه
Choosing a Variable Ordering for Truth-Table Invariant Cylindrical Algebraic Decomposition by Incremental Triangular Decomposition
Cylindrical algebraic decomposition (CAD) is a key tool for solving problems in real algebraic geometry and beyond. In recent years a new approach has been developed, where regular chains technology is used to first build a decomposition in complex space. We consider the latest variant of this which builds the complex decomposition incrementally by polynomial and produces CADs on whose cells a ...
متن کاملOptimising Problem Formulation for Cylindrical Algebraic Decomposition
Cylindrical algebraic decomposition (CAD) is an important tool for the study of real algebraic geometry with many applications both within mathematics and elsewhere. It is known to have doubly exponential complexity in the number of variables in the worst case, but the actual computation time can vary greatly. It is possible to offer different formulations for a given problem leading to great d...
متن کاملTwo meta-heuristic algorithms for parallel machines scheduling problem with past-sequence-dependent setup times and effects of deterioration and learning
This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machin...
متن کاملResource Constrained Project Scheduling with Material Ordering: Two Hybridized Meta-Heuristic Approaches (TECHNICAL NOTE)
Resource constrained project scheduling problem (RCPSP) is mainly investigated with the objective of either minimizing project makespan or maximizing project net present value. However, when material planning plays a key role in a project, the existing models cannot help determining material ordering plans to minimize material costs. In this paper, the RCPSP incorporated with the material order...
متن کاملTwo Strategies Based on Meta-Heuristic Algorithms for Parallel Row Ordering Problem (PROP)
Proper arrangement of facility layout is a key issue in management that influences efficiency and the profitability of the manufacturing systems. Parallel Row Ordering Problem (PROP) is a special case of facility layout problem and consists of looking for the best location of n facilities while similar facilities (facilities which has some characteristics in common) should be arranged in a row ...
متن کامل